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We present two classes of exact solutions of the Navier–Stokes equations, which des-
cribe steady vortex structures with two-dimensional symmetry in an infinite fluid. The
first is a class of similarity solutions obtained by conformal mapping of the Burgers
vortex sheet to produce wavy sheets, stars, flowers and other vorticity patterns. The
second is a class of non-similarity solutions obtained by continuation and map-
ping of the classical solution to steady advection–diffusion around a finite circular
absorber in a two-dimensional potential flow, resulting in more complicated vortex
structures that we describe as avenues, fishbones, wheels, eyes and butterflies. These
solutions exhibit a transition from ‘clouds’ to ‘wakes’ of vorticity in the transverse flow
with increasing Reynolds number. Our solutions provide useful test cases for numerical
simulations, and some may be observable in experiments, although we expect
instabilities at high Reynolds number. For example, vortex avenues may be related to
counter-rotating vortex pairs in transverse jets, and they may provide a practical means
to extend jets from dilution holes, fuel injectors, and smokestacks into crossflows.

1. Introduction
There are very few known exact solutions of the Navier–Stokes equations of viscous

fluid dynamics, which have the familiar dimensionless form:

∂u
∂t

+ u · ∇u = −∇p + Re−1∇2u, (1.1)

∇ · u = 0. (1.2)

In this paper, we shall construct new families of steady solutions, for which pressure,
and inertial and viscous stresses are in equilibrium, implying a corresponding balance
between advection and diffusion of vorticity.

This balance is nicely illustrated by the vortex sheet (Burgers 1948) shown in
figure 1, which is one of the least trivial known solutions to equations (1.1)–(1.2). A
steady two-dimensional vortex structure is formed when the vorticity between two
shearing half-planes of fluid moving in opposite directions is confined by a transverse
potential flow with uniform strain rate. The dependence on the Reynolds number is
quite simple, since this only sets the O(Re−1/2) scale of the thickness of the vortex
sheet, but not its spatial structure, which is self-similar.

Burgers’ solution has been extended to allow for a time-dependent (but spatially
uniform) transverse strain rate (Gibbon, Fokas & Doering 1999); here by contrast,
we focus on the geometrical complexity of steady vortex structures maintained by
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Figure 1. The Burgers vortex sheet. Colour contours are contours of the out-of-plane velocity
component (and also vortex lines of the flow); the yellow streamlines are those of the in-plane
velocity field. Note that the same colour scale applies to all subsequent figures.

non-uniform strain. We apply a conformal-mapping technique, briefly explained in § 2,
to two different base states. A first class of new steady solutions is obtained in § 3 by
conformal mapping of the Burgers vortex sheet to produce wavy sheets, flowers, stars,
and other vorticity patterns. A second class is derived in § 4 starting from the classical
problem of advection–diffusion of an absorbing cylinder in a uniform background
flow, to produce what may be described as vortex avenues† (the two-dimensional
analogue of vortex tubes), fishbones, wheels, eyes, and butterflies. We conclude in § 5
with a discussion of possible applications of our solutions.

2. Background
We seek steady solutions with two-dimensional symmetry of the form

u(x, y, z) = (∇φ(x, y), v(x, y)), (2.1)

where φ is the velocity potential for the flow in the (x, y)-plane and v is the out-of-
plane velocity component. The vorticity field is

ω = (∂v/∂y, −∂v/∂x, 0), (2.2)

so that the contours v = const. are also the vortex lines of the flow. Substituting
equation (2.1) into the Navier–Stokes equations yields

∇2φ = 0, (2.3)

Re∇φ · ∇v = ∇2v, (2.4)

p = −(1/2)|∇φ|2. (2.5)

The first two equations (2.3)–(2.4) are those of steady advection–diffusion of a scalar v

in a two-dimensional potential flow, where Re plays the role of the Péclet number, so
the out-of-plane velocity is thus determined entirely by a balance between inertia and
viscosity. The third equation (2.5) determines the dynamical pressure p as (minus) the

† A vortex avenue is a type of mixing-layer, non-uniform in the direction of the vorticity field
within the layer; it should not of course be confused with a vortex street!
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in-plane kinetic energy density since it comes from a balance between pressure and
inertia (Bernoulli’s law).

The classical vortex sheet of Burgers (1948),

φ = x2 − y2, v = erf
(
Re1/2y

)
, p = −2(x2 + y2), (2.6)

provides the simplest solution of the form (2.1), but this is by no means the only
one. The reason is that the system of advection–diffusion equations (2.3)–(2.4) is in a
conformally invariant class (Bazant 2004), so that we can apply conformal mapping
techniques to generate new solutions. One manifestation of conformal invariance is the
classical transformation to streamline coordinates (Boussinesq 1905), which is simply
mapping to a domain of uniform flow. Although often used to analyse high-Reynolds-
number flows (Eames & Bush 1999; Hunt & Eames 2002), streamline coordinates
are not directly useful here, since they introduce unphysical branch cuts in the flow
(which would correspond to inviscid slipping boundaries) emanating from stagnation
points; we can, however, still exploit the general idea of conformal mapping.

3. Similarity solutions: vortex sheets, stars and flowers
Consider a conformal mapping w = f (z) from the z-plane containing some new

solution, to the w-plane containing the Burgers vortex sheet. From (2.6), the
transformed solution is then of the form

φ = Re [f (z)]2, v = erf
(
Re1/2Imf (z)

)
, p = −2|f ′(z)f (z)|2. (3.1)

The in-plane velocity is constructed in the usual way, ∇φ = 2f ′(z)f (z), where we now
represent in-plane vectors by complex scalars. The vorticity is given by

ω = 2(Re/π)1/2f ′(z) exp (−Re[Imf (z)]2), (3.2)

and the shear-strain rate by ∇v = iω. For different choices of f (z), the vortex lines
can have rather complicated spatial structures.

If the flow is to be free of singularities, then f (z) must be entire (analytic every-
where). In that case, Liouville’s theorem states that a non-constant f (z) must also be
unbounded. Apart from the trivial case of stretching and translating Burgers’ vortex
sheet by a linear f (z), this implies the existence of powers zk , k � 2, in the Taylor series
(valid everywhere), which dominate as |z| → ∞, so the map must be multivalent (not
one-to-one). By the Minimum Modulus Principle applied to f ′(z), this further implies
the existence of (isolated) points where the mapping loses conformality, f ′(z) = 0, at
stagnation points of the transverse flow.

We conclude that all non-trivial new solutions in the class (3.1) which are free of
singularities involve a patchwork of multiple warped copies of Burgers’ vortex sheet.
This general result is illustrated by the simple mappings, f (z) = zn (n= 2, 3, . . .), which
produce 2n-pointed vortex stars, as illustrated in figure 2(a) for the case n= 3. Entire
functions with multiple roots, where f (z) = 0, introduce additional images of the
stagnation point in Burgers’ vortex sheet. The case f (z) = 1 − z2, shown in figure 2(b),
has three stagnation points (since f ′(0) = f (±1) = 0), but looks like a four-pointed
star, or vortex cross, far away (since f (z) ∼ − z2 as |z| → ∞).

More generally, we may construct physical solutions by allowing f (z) to be any
meromorphic function (with only pole singularities). A simple class of solutions with
only one singularity is obtained by Möbius transformations, which effectively move
the quadrupole singularity at infinity in Burgers’ solution to a finite point in the
plane. If the pole of the inverse map does not lie on the real axis, then the solution
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Figure 2. Solutions obtained by conformal mapping, w = f (z), to Burgers’ vortex sheet: (a) a
vortex star, f (z) = z3; (b) a vortex cross with stagnation points on its arms, f (z) = 1 − z2; (c) a
circular vortex sheet, f (z) = (1+ z)/i(1 − z) (where the black circle indicates the separatrix of
the transverse flow); (d) a vortex flower, f (z) = z−2; and (e–h) wavy vortex sheets, non-uniformly
strained by dipole singularities, f (z) = z +

∑3
j=1(z−zj )

−1, z1 = 2.5i, z2 = 2 − 2.5i, z3 = −2 − 2.5i,

for (e) Re =0.01, (f) Re= 0.1, (g) Re= 1, and (h) Re= 10.
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corresponds to a circular vortex sheet, because the centre of the Burgers vortex sheet
is mapped to a circle, as shown in figure 2(c). If the pole lies on the real axis, then
the quadrupole separates two regions of opposite out-of-plane flow. This solution is
easily generalized to a vortex flower with 2n ‘petals’, given by the multivalent mapping,
f (z) = z−n (n= 1, 2, . . .). In this case, the vorticity between the petals is confined by a
4n-pole singularity in the in-plane flow, located at the centre of the flower, as shown
in figure 2(d).

By placing singularities in the transverse potential flow, non-uniform strain may be
applied to Burgers’ vortex sheet, without changing its basic topology. For example,
we may place dipole singularities in the low-shear regions of nearly uniform out-of-
plane velocity with maps of the form, f (z) = z +

∑
j aj (z − zj )

−1. A case with three
dipole singularities, one above and two below the sheet, is shown in figure 2(e–h)
for different values of Re. Since the map introduces some length scales, the spatial
structure of the solution has a more complicated dependence on Re, which is not
simply a rescaling of the Cartesian coordinate system, as in the scale-free examples
of figures 2(a) and 2(d). Nevertheless, as illustrated in figure 2(e–h), the geometry of
the vortex lines (constant v) and the shear-strain-rate lines (∇v) is independent of
Re, since it depends only on the conformal map. Changing Re simply changes the
magnitude of v along the same set of iso-velocity lines, but not the direction of ∇v.
This is a consequence of a general equivalence theorem for conformally invariant
fields (Bazant 2004). The present case of advection–diffusion in a potential flow was
first discussed by Koplik, Redner & Hinch (1994).

As this example illustrates, the vortex structures obtained above from Burgers’
solution have a relatively simple dependence on the Reynolds number, which can be
removed by rescaling the curvilinear coordinates, f (z) �→ Re1/2f (z). They are ‘similarity
solutions’ in the sense that v depends on only one curvilinear coordinate (Bazant 2004).
Solutions with a more complicated spatial dependence on the Reynolds number can be
obtained from other classical solutions to the advection–diffusion problem, equations
(2.3)–(2.4).

4. Non-similarity solutions: vortex avenues, fishbones, and wheels
To construct more complicated solutions to the Navier–Stokes equations, we start

with the canonical problem of steady advection–diffusion around an absorbing,
circular cylinder in a uniform background flow of constant velocity and constant
concentration (Choi et al. 2004):

Pe ∇φ · ∇c = ∇2c and ∇2φ = 0 for |z| > 1, (4.1)

c = 0, n̂ · ∇φ = 0 for |z| = 1 and c → 1, ∇φ → x̂ as |z| → ∞. (4.2)

The harmonic velocity potential for flow past a cylinder is

φ(z) = Re Φ(z), Φ(z) = z + z−1. (4.3)

The (non-harmonic) solution for the concentration, c(z, z, Pe ), is more complicated,
but it has been described in the literature on the mathematical theory of freezing (van
Wijngaarden 1966; Maksimov 1976; Kornev & Mukhamadullina 1994; Choi et al.
2004).

Let us briefly describe this particular solution to the advection–diffusion problem,
equations (4.1)–(4.2). It is convenient to change variables, c̃(x̃, ỹ) = 1 − c(z, z, Pe) to
streamline coordinates, x̃ + iỹ = (z + z−1)/2, where the disk is mapped to a finite strip
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Figure 3. Steady vortex avenues confined by transverse flow with a dipole source inside and
a uniform background flow outside (a dipole at ∞). These transverse jets exhibit a non-trivial
dependence on the Reynolds number with a transition from ‘clouds’ to ‘wakes’ of vorticity:
(a) Re= 0.1, (b) Re= 1, (c) Re= 10, (d) Re= 100.

on the real axis, −1 � x̃ � 1. The solution can then be expressed as a convolution

c̃(x̃, ỹ) = 2

∫ 1

−1

G(x̃ − x̃ ′, ỹ)σ (x̃ ′) dx̃ ′, (4.4)

in terms of the Green function,

G(x̃, ỹ) = ePex̃K0(Pe
√

x̃2 + ỹ2)/2π, (4.5)

where K0(r̃) is a modified Bessel function of the second kind, and the function σ (x̃), the
flux density along the strip, satisfies the following integral equation (Pearson 1957):∫ 1

−1

ePe(x̃−x̃ ′)K0(Pe|x̃ − x̃ ′|)σ (x̃ ′) dx̃ ′ = π, −1 < x̃ < 1. (4.6)

This equation cannot be solved in terms of elementary functions, but very accurate
uniformly valid approximations and numerical solutions are available (Choi et al.
2004)†. We may therefore regard σ (x̃; Pe) as a ‘known’ special function, from which
to construct exact solutions to the Navier–Stokes equations.

The advection–diffusion solution, (φ, c), described above is valid outside the unit
disk, |z| > 1, but we can continue it to the inside, in order to construct a solution
to the Navier–Stokes equations valid everywhere, as shown in figure 3. The complex
potential for the in-plane velocity, equation (4.3), can be analytically continued
everywhere, except for the flow dipole at the origin. The out-of-plane velocity can
be obtained by taking advantage of symmetries. The idea is to patch together the

† Matlab scripts for numerical solutions are available at http://advection–diffusion.net.
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solution outside the disk with its image under inversion, inside the disk:

v(z, z, Re) =

{
c(z, z, Re) if |z| � 1

−c(z−1, z−1, Re) if |z| < 1.
(4.7)

Because the potential has the same symmetry, Φ(z−1) = Φ(z), the fields, (φ, v), for
0 < |z| < 1 are obtained in equations (4.3)–(4.7) by a conformal change of variables,
z �→ z−1, and a sign change, c �→ −c, from a solution valid in |z| > 1. The conformal
invariance of the system (4.1) and its linearity in c then imply that (φ, v) is a valid
solution for all |z| �=0, 1.

At z = 0 there is an in-plane dipole singularity and a constant out-of-plane velocity
v = −1, but we must check that (φ, v) in equations (4.3)–(4.7) satisfies equations (2.3)–
(2.4) on the unit circle, |z| =1. The outer solution is reflection symmetric, since
φ(z) = φ(z) and c(z, z, Pe) = c(z, z, Pe), so the conformal mapping z �→ z−1 yields the
same solution inside the disk as the non-conformal mapping z �→ z−1 (sometimes
called ‘circular inversion’; see Needham 1997). The construction c �→ −c as z �→ z−1 in
equation (4.7) makes v locally an ‘odd function’ in the radial coordinate at the circle.
Since c = 0 on |z| =1, this implies that v and ∇v are continuous across |z| =1. Since
φ and ∇φ are also continuous (by the analyticity of Φ), the left-hand side of (2.4) is
continuous across |z| =1. The boundary condition (4.2) implies that ∇2c ∝ ∇φ · ∇c → 0
as |z| → 1+, which shows that the right-hand side of (2.4) is also continuous across
|z| =1. This completes the proof that the vorticity field given by equations (4.3)–(4.7)
does indeed provide a valid solution to the Navier–Stokes equations.

Unlike the similarity solution in figure 2(c) for a circular vortex sheet emanating
from a flow quadrupole, this vortex avenue, shown in figure 3, is confined by a separate
dipole inside at z = 0 and an opposing uniform flow (dipole at ∞) outside at z = ∞.
As discussed below, a vortex avenue is the special case of a steady transverse jet in a
cross-flow. It has a non-trivial dependence on Re, inherited from the dependence of c

on Pe. For Re 
 1, the region of vorticity appears spread out like a ‘cloud’ over most
of the space. For Re � 1, the vorticity is confined to an avenue of width O(Re−1/2),
which separates at the rear stagnation point to form a thin ‘wake’ of vorticity in the
transverse flow of width also O(Re−1/2) and length O(1). The transition from clouds
to wakes occurs at Re ≈ 60 (Choi et al. 2004).

With an exact solution now available, it is straightforward to generate others by
conformal mapping, w = f (z), as we did with Burgers’ vortex sheet. The new class of
solutions (φ, v, p) is given by

φ(z) = Re Φ(z), Φ(z) = f (z) + f (z)−1, (4.8)

v(z, z, Re) =

{
c(f (z), f (z), Re) if |f (z)| � 1

−c(f (z)−1, f (z)
−1

, Re) if|f (z)| < 1,
(4.9)

p = − 1
2
|f ′(z)|2(1 − f (z)−2)(1 − f (z)

−2
). (4.10)

For example, general Möbius transformations, f (z) = (az + b)/(cz + d), produce a
circular (or flat) vortex sheet confined between transverse dipoles. If the half-plane
is mapped to the interior of the unit disk, the solution consists of a pair of avenues,
stabilized by either diverging or converging dipoles, which resemble vortex eyes or a
vortex butterfly, respectively, as shown in figures 4(a) and 4(b). The solutions illustrate
how oppositely directed parallel jets can be stabilized by transverse flows.

Of course, there is no limit to the variety of solutions that may be obtained by
different choices of conformal mappings f (z) in equations (4.8)–(4.10). In addition to
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Figure 4. Solutions obtained by conformal mappings, w = f (z), to the vortex avenues in
figure 3: (a) vortex eyes, f (z) = (1 + z)/(1 − z), a pair of avenues stabilized by transverse
diverging dipoles at Re= 1; (b) a vortex butterfly, f (z) = − (1 + z)/(1 − z), stabilized by
converging dipoles at Re= 10; vortex fishbones, f (z)= i log z, at (c) Re =0.1 and (d) Re= 10;
and vortex wheels, (e) f (z) = z2 and (f) f (z) = z3, at Re =1.

placing pole singularities in the fluid as before, we can also consider non-meromorphic
functions, which exploit the symmetry of the solution. For example, f (z) = i log(z)
maps the vortex avenues in figure 3 to vortex fishbones, with an array of rib-like
sheets connected by a transverse spine. These solutions, shown in figure 4(c, d), are
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noteworthy in that they are free from singularities, like Burgers’ vortex sheet, and yet
they are not similarity solutions and have a complicated dependence on the Reynolds
number. Mapping these solutions again with an exponential mapping of a different
period to give f (z) = zn, we obtain another class of vortex avenues, now confined by
higher-order multipoles in the transverse flow. As the Reynolds number is increased,
these solutions begin to look like vortex wheels with thin ‘spokes’ of vorticity, as
shown in figure 4(e, f ).

5. Discussion
We have presented two classes of exact solutions of the Navier–Stokes equations re-

presenting steady vortex structures with two-dimensional symmetry, confined by
transverse potential flows. These solutions provide mathematical insights into the
Navier–Stokes equations and physical insights into ways that vorticity may be con-
fined. They also provide stringent tests for the accuracy of numerical simulations.

Our solutions are likely to be difficult to observe in the laboratory because they
involve carefully placed singularities and/or stagnation points in the in-plane potential
flow field, which must be achieved while also setting the appropriate out-of-plane
shearing flow, which provides the vorticity. Perhaps the most promising examples
to pursue in experiments would be the vortex avenues in figure 3 or the eyes and
butterflies in figure 4; at high Reynolds numbers, such flows are likely to be subject
to three-dimensional instability leading to turbulence, but something resembling an
exact steady solution may be observable before such instability develops.

Vortex avenues may have relevance for jets in cross-flows, as produced by dilution
holes of gas turbine combustors, fuel injectors, and smokestacks. Transverse jets have
been studied extensively in experiments (Kamotani & Greber 1972; Fearn & Weston
1974; Smith & Mungal 1998; Su & Mungal 2004) and numerical simulations (Yuan
& Street 1998; Cortelezzi & Karagozian 2001; Muppidi & Mahesh 2005a). A robust
feature is the formation of a counter-rotating vortex pair (CVP) thought to be initiated
either in the inlet pipe (Coelho & Hunt 1989) or the shear layer emanating from the
orifice (Kelso, Lim & Perry 1996). Recently, Muppidi & Mahesh (2005b) have shown
that the CVP also forms in a two-dimensional model, starting from a uniform round
jet in a transverse potential flow (Re > 1000). Their simulations produce steadily trans-
lating jets, which resemble vortex avenues (in the moving frame), suggesting that CVP
formation is influenced by the existence of an exact solution having similar steady
vortex structure.

The steady vortex avenue also suggests a practical means to extend a transverse
jet by introducing a CVP in a round inlet pipe. Shear layers near the walls make it
difficult to reproduce the exact solution, but tuning the strength of an inlet CVP may
straighten the jet trajectory or even cause it to bend upstream (prior to instability
and turbulence). This design principle could be useful in controlling pollutant release
from smokestacks and fuel/dilutant injection in combustors. Similarly, vortex eyes
and butterflies may motivate designs with multiple inlet pipes.

Our solutions also provide possible starting points for further analysis of the
Navier–Stokes equations and pose intriguing questions of linear and nonlinear stabi-
lity. We have provided several classes of solutions which are completely free of sin-
gularities, obtained with arbitrary entire functions f (z) in either equation (3.1) or
equations (4.8)–(4.10). It would be interesting to study whether three-dimensional per-
turbations of these solutions remain smooth for all times, particularly in the latter case.
The long, thin wakes of vorticity may be highly unstable at high Reynolds number.
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